Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Biosci (Elite Ed) ; 16(1): 9, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38538528

RESUMO

In most ecosystems, plants establish complex symbiotic relationships with organisms, such as bacteria and fungi, which significantly influence their health by promoting or inhibiting growth. These relationships involve biochemical exchanges at the cellular level that affect plant physiology and have evolutionary implications, such as species diversification, horizontal gene transfer, symbiosis and mutualism, environmental adaptation, and positive impacts on community structure and biodiversity. For these reasons, contemporary research, moving beyond observational studies, seeks to elucidate the molecular basis of these interactions; however, gaps in knowledge remain. This is particularly noticeable in understanding how plants distinguish between beneficial and antagonistic microorganisms. In light of the above, this literature review aims to address some of these gaps by exploring the key mechanisms in common interspecies relationships. Thus, our study presents novel insights into these evolutionary archetypes, focusing on the antibiosis process and microbial signaling, including chemotaxis and quorum sensing. Additionally, it examined the biochemical basis of endophytism, pre-mRNA splicing, and transcriptional plasticity, highlighting the roles of transcription factors and epigenetic regulation in the functions of the interacting organisms. These findings emphasize the importance of understanding these confluences in natural environments, which are crucial for future theoretical and practical applications, such as improving plant nutrition, protecting against pathogens, developing transgenic crops, sustainable agriculture, and researching disease mechanisms. It was concluded that because of the characteristics of the various biomolecules involved in these biological interactions, there are interconnected molecular networks in nature that give rise to different ecological scaffolds. These networks integrate a myriad of functionally organic units that belong to various kingdoms. This interweaving underscores the complexity and multidisciplinary integration required to understand plant-microbe interactions at the molecular level. Regarding the limitations inherent in this study, it is recognized that researchers face significant obstacles. These include technical difficulties in experimentation and fieldwork, as well as the arduous task of consolidating and summarizing findings for academic articles. Challenges range from understanding complex ecological and molecular dynamics to unbiased and objective interpretation of diverse and ever-changing literature.


Assuntos
Ecossistema , Epigênese Genética , Plantas , Simbiose , Bactérias
2.
Rev. argent. microbiol ; 55(3): 4-4, Oct. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1529619

RESUMO

Resumen Muchos de los hongos degradadores de madera están implicados en la síntesis de metabolitos bioactivos de naturaleza antimicrobiana y terapéutica, así como de compuestos de importancia biotecnológica, incluyendo derivados indólicos, entre otros. Estos hongos brindan ciertos beneficios ecológicos a las plantas, entre los que se destacan la protección contra fitopatógenos y la promoción del crecimiento radicular. Xylaria sp. es un hongo degradador de celulosa (lignocelulolítico) con potencial biotecnológico. El ácido indol-3-acético (AIA) desempeña un papel sumamente importante en las interacciones planta-microorganismo, ya que es esencial para la fisiología y el correcto desarrollo morfológico vegetal. Se sabe que las enzimas nitrilo-hidrolíticas (nitrilasas) están involucradas en la síntesis de compuestos indólicos en las plantas, no obstante, se dispone de poca información acerca de la naturaleza de estas enzimas en el reino de los hongos. A través de una aproximación bioquímica y de genética molecular, se demuestra por primera vez que Xylaria sp. posee actividad enzimática nitrilasa utilizando compuestos ricos en nitrógeno y carbono como sustrato. La cepa estudiada aumentó sus niveles de expresión génica relativa y mostró crecimiento micelial, ambos en presencia de compuestos químicos como cianobenceno y KCN. Los resultados de este trabajo sugieren que el microorganismo es capaz de degradar moléculas nitrogenadas complejas. Por otra parte, mediante biofertilización con extractos fúngicos, se observó que Xylaria sp. promueve el desarrollo del sistema radicular de plántulas de Arabidopsis thaliana, además de sintetizar AIA.


Abstract Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phy-topathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demon-strated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbonrich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.

3.
Rev Argent Microbiol ; 55(3): 214-225, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-37024343

RESUMO

Endophytic fungi inhabit plant tissues internally and asymptomatically, and many of them are involved in the synthesis of bioactive metabolites of antifungal and therapeutic nature, as well as other compounds of biotechnological importance including indole derivatives, among many others. Ecologically, they provide some benefits to plants including protection against phytopathogens and promotion of root growth. In this sense, Xylaria sp. is a cellulose-decomposing fungus with biotechnological potential. It is worth mentioning that indole-3-acetic acid (IAA) also plays an extremely important role in plant-micro-organism interactions, as it is essential for physiology and proper plant morphological development. It is known that nitrile-hydrolytic enzymes (nitrilases) are involved in the synthesis of plant indole compounds; however, relatively little information is available concerning the nature of these enzymes in the fungal kingdom. In view of the above, through a biochemical and molecular-genetic approach, it has been demonstrated for the first time that Xylaria sp. carries out nitrile-hydrolytic enzyme activity using nitrogen and carbon-rich compounds as substrate. The studied strain increased its relative gene expression levels and showed mycelial growth, both in the presence of chemical compounds such as cyanobenzene and KCN. Thus, the results of this work suggest that the micro-organism is capable of degrading complex nitrogenous molecules. On the other hand, through fungal biofertilization, it was observed that Xylaria sp. promotes the development of the root system of Arabidopsis thaliana seedlings, in addition to synthesizing IAA.


Assuntos
Ácidos Indolacéticos , Indóis , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Plantas , Nitrilas
4.
Bull Environ Contam Toxicol ; 108(5): 956-962, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35226110

RESUMO

The tropical endogeic earthworm Pontoscolex corethrurus, a non-standard species used in ecotoxicity, has been found in crude oil-contaminated habitats. We estimated the removal of total hydrocarbons from heavy crude "Maya" oil on an artificially contaminated soil with a median lethal concentration of P. corethrurus and an addition of oil palm bagasse. P. corethrurus had a high survival rate, and the addition of oil palm bagasse led to a greater growth and an increase in abundance of bacteria and fungi. The activity of P. corethrurus and the nutritional quality of oil palm bagasse had a significant impact on the removal of a larger amount of petroleum hydrocarbons from contaminated soil. We concluded that the endogeic earthworm P. corethrurus and oil palm bagasse acted synergistically to achieve a more effective removal of total petroleum hydrocarbons from soil. These results show the potential for using P. corethrurus to remove, either directly or indirectly, crude oil from soil.


Assuntos
Oligoquetos , Petróleo , Poluentes do Solo , Animais , Biodegradação Ambiental , Celulose , Hidrocarbonetos , Petróleo/toxicidade , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Bull Environ Contam Toxicol ; 99(2): 154-160, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28638962

RESUMO

Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC50) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.


Assuntos
Oligoquetos/fisiologia , Petróleo/toxicidade , Poluentes do Solo/toxicidade , Animais , Ecotoxicologia , Hidrocarbonetos/toxicidade , México , Poluição por Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Testes de Toxicidade Aguda
6.
J Ind Microbiol Biotechnol ; 36(1): 11-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18800233

RESUMO

Eighteen lactic acid bacteria (LAB) strains, isolated from coffee pulp silages were characterized according to both growth and gallic acid (GA) consumption. Prussian blue method was adapted to 96-well microplates to quantify GA in LAB microcultures. Normalized data of growth and GA consumption were used to characterize strains into four phenotypes. A number of 5 LAB strains showed more than 60% of tolerance to GA at 2 g/l; whereas at 10 g/l GA growth inhibition was detected to a different extent depending on each strain, although GA consumption was observed in seven studied strains (>60%). Lactobacillus plantarum L-08 was selected for further studies based on its capacity to degrade GA at 10 g/l (97%). MRS broth and GA concentrations were varied to study the effect on growth of LAB. Cell density and growth rate were optimized by response surface methodology and kinetic analysis. Maximum growth was attained after 7.5 h of cultivation, with a dilution factor of 1-1/2 and a GA concentration between 0.625 and 2.5 g/l. Results indicated that the main factor affecting LAB growth was GA concentration. The main contribution of this study was to propose a novel adaptation of a methodology to characterize and select LAB strains with detoxifying potential of simple phenolics based on GA consumption and tolerance. In addition, the methodology presented in this study integrated the well-known RSM with an experimental design based on successive dilutions.


Assuntos
Técnicas de Cultura , Ácido Gálico/metabolismo , Ácido Láctico/metabolismo , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Técnicas Bacteriológicas , Coffea/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Cinética , Lactobacillaceae/química , Lactobacillaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...